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Introduction
We introduce the Fast Marching farthest point 
sampling (FastFPS) approach for the progressive 
sampling of planar domains and curved manifolds in 
triangulated, point cloud or implicit form. We use 
Fast Marching methods [3,4,5,8] for the 
incremental computation of distance maps across 
the sampling domain and obtain a farthest point 
sampling technique which performs equally well 
in both the uniform and the adaptive case. Unlike 
similar previous sampling schemes [1,2], it is 
equally efficiently applicable to both images and 
higher dimensional surfaces.

The sampling principle
FastFPS is based on the idea of repeatedly placing 
the next sample point in the middle of the least-
known area of the sampling domain. For 
simplicity, take the bounded discrete Voronoi 
diagram representation of a planar domain (a). 
The point farthest away from all other points, 
and thus the next FastFPS sample, is given by the 
centre of the largest circle empty of any other 
point. In the case of farthest point sample sets, 
this centre necessarily coincides with a vertex of 
the bounded Voronoi diagram (b) [1]. This new 
sample point is inserted into the diagram and Fast 
Marching is used to locally update the Voronoi 
diagram accordingly (c,d,e). Thus, incremental 
discrete Voronoi diagram construction yields 
FastFPS samples progressively. We use recent 
extensions [3,4,5] to the basic Fast Marching 
algorithm [8] to apply the farthest point principle 
to domains in triangular, point cloud and implicit 
form [6] without any loss in efficiency. By varying 
the speed of the local front propagation with, for 
example, local curvature or local similarity 
measures, this scheme inherently supports 
adaptive sampling.

Figure 1: The Fast Marching 
farthest point sampling 
principle applied on a 
regular quadrilateral grid.

Properties
(a) Applicability 
The algorithm can be applied to sample domains 
in regular grid, triangular, point cloud or implicit 
form. This allows for numerous applications such 
as surface reconstruction from unorganised point 
clouds, progressive transmission & rendering, 
remeshing, resampling, point cloud & mesh 
simplification [7], multiresolution representations, 
implicit surface sampling.
(b) Efficiency 
The algorithm is O(N log N), N representing the 
number of grid points or triangle vertices, 
irrespective of the domain representation.
(c) Anti-aliasing
Farthest point sequences feature excellent anti-
aliasing properties documented by a “blue noise” 
power spectral density, i.e. aliasing effects are 
traded for high frequency noise [1].
(d) Irregular uniform point set distribution
Farthest point sequences are deterministic and 
minimise the maximum distance between sample 
points. This yields cluster- and hole-free point 
distributions contributing to property (c) [2].

(a) The bounded (discrete) 
Voronoi diagram (BVD) of n 
sample points in the plane 
(above) and the 
corresponding equal 
distance contours (below).

(b) Sample point n+1 is 
located at the centre of the 
largest circle empty of any 
other sample points. This will 
always be a vertex of BVD.

(c) The BVD is updated 
locally by propagating a 
front (here: with unit 
speed) from the new 
sample point outwards.

(b) Quasi-randomly (Halton) sampled 
point set: Points are still placed 
arbitrarily closely to each other.
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(c) Farthest point-sampled point set: 
The sampling domain is filled 
irregularly uniformly without any 
clusters or holes of significant size.

(a) Randomly sampled point set: 
The distribution is characterised by 
clusters and large holes.

Figure 2: Distributions of randomly (a), quasi-randomly (b) and farthest point-sampled (c)
                  point sets.

(d) Front propagation is posed as a 
boundary PDE, the solution to which 
can be approximated very efficiently 
using Fast Marching  techniques 
[3,4,5,8]. This is equivalent to distance 
mapping directly across the domain 
irrespective of its representation.

(e) The BVD (bottom) and the 
underlying distance map  (top) 
have been updated. If 
applicable, the process 
continues from step (a).



Application to planar domains

Figure 3: FastFPS for planar domains — example.

Figure 5:  FastFPS for triangular domains — example.

(a) The original "Mandrill" 
and "Peppers" test images. 
(http://www.bragzone.com).

Application to triangular meshes

(b) Point set produced by 
FastFPS using a similarity 
measure based on the 
CLAB colour space to 
sample the image 
adaptively at 3.1% (8k).

(c) As in (b) but for a sample 
budget of 6.2% (16k).

(e) Four nearest neighbour 
reconstruction using the 
point set in (b).

(f ) Four nearest neighbour 
reconstruction using the 
point set in (c).

(d) Four nearest neighbour 
reconstruction of the 
uniformly sampled test 
image using FastFPS for 
planar domains with a 3.1% 
(8k) sample budget.

Figure 4: FastFPS for planar domains — execution efficiency.
The algorithm's execution performance on a moderately specified PC (Pentium III 700 MHz, 512 MB, Windows machine) as a function of the size of 
the input image with a constant 10% sample budget (left) and as a function of the sample budget for a constant (512x512) input image (right).

(a) The original "Dragon" 
and "Venus" objects (http://
w w w. c y b e r w a r e . c o m ) .

(b) 3D point sets produced 
by uniform FastFPS for 
triangular domains with a 
4.3% (8k, Dragon) and 10.0% 
(14k, Venus) sample budget.

(c) Triangular meshes 
corresponding to (b).

(d) Shaded renderings of 
meshes in (c).

Figure 6:  FastFPS for triangular domains — execution efficiency.
The algorithm's execution performance on a moderately specified PC (Pentium III 700 MHz, 512 MB, Windows machine) as a function of the size of the input 
model with a constant 10% sample budget (left) and as a function of the sample budget for a constant input model (right).


