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Abstract

We present a method for tuning primal stationary subdivision schemes to give the best possible behaviour near
extraordinary vertices with respect to curvature variation.
Current schemes lead to a limit surface around extraordinary vertices for which the Gaussian curvature diverges,
as demonstrated by Karčiauskas et al. [KPR04]. Even when coefficients are chosen such that the subsubdominant
eigenvalues, µ, equal the square of the subdominant eigenvalue, λ, of the subdivision matrix [DS78] there is still
variation in the curvature of the subdivision surface around the extraordinary vertex as shown in recent work by
Peters and Reif [PR04] illustrated by Karčiauskas et al. [KPR04].
In our tuning method we optimise within the space of subdivision schemes with bounded curvature to minimise
this variation in curvature around the extraordinary vertex. To demonstrate our method we present results for
the Catmull-Clark [CC78], 4-8 [Vel01, VZ01] and 4-3 [PS03] subdivision schemes. We compare our results to
previous work on the tuning of these schemes and show that the coefficients derived with this method give a
significantly smaller curvature variation around extraordinary vertices.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling, I.3.6 [Computer Graphics]: Methodology and Techniques

1. Introduction

Subdivision is an algorithmic technique to generate smooth
surfaces as the limit of a sequence of successively refined
polyhedral meshes. By repeatedly applying the subdivision
procedure to the initial manifold mesh of vertices joined by
faces, we generate a sequence of meshes that converges to a
resulting smooth surface.

Subdivision surface schemes have been around since 1978
[CC78]. Even then the question of how to choose the co-
efficients around extraordinary vertices was identified as
a key issue [DS78]. Extraordinary points are associated
with vertices and faces that do not have the ordinary num-
ber of neighbours, i.e. 4 neighbours for quadrilateral, or 6
neighbours for triangular subdivision schemes. Problems ob-
served at and near such extraordinary points can include un-
bounded increase of curvature, erratic fluctuation of curva-
ture or flat spots [SB03, PR04].

Although these misbehaviours are not serious enough to
prevent use of subdivision surfaces in graphics, they are criti-
cal in CAD/CAM where Class A surfaces are required. They
may be one reason why subdivision surfaces have not re-
placed NURBS in CAD/CAM software. Improving the be-
haviour of subdivision surfaces around extraordinary points
in the limit is therefore critical to the success of subdivision
schemes in applications requiring Class A surfaces.

In this paper we consider primal schemes. For such
schemes we need to consider tuning for extraordinary ver-
tices (EVs) only. After one subdivision step, such schemes
will have no extraordinary faces and the number of EVs will
stay constant.

It has been proven that, for many of the schemes, the goal
of C2 at an extraordinary vertex is unattainable [Rei96]. We
instead optimise a subdivision scheme against a quality cri-
terion, which is designed to ensure that the variation in Gaus-
sian curvature around an EV is kept to a minimum.
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The method presented can be applied to any primal sub-
division scheme on any base tiling. We focus on schemes
which work on quadrilateral lattices, since these are most
frequently used in engineering applications. We demonstrate
our method by presenting results for three approximating
quadrilateral schemes: Velho’s 4-8 scheme [Vel01, VZ01],
the Catmull-Clark scheme [CC78], and Peters and Shiue’s
4-3 scheme [PS03].

1.1. Tuning Subdivision Schemes
A subdivision operation creates a new finer mesh by con-
structing new vertices as linear combinations of old ones.
The coefficient or weights of the linear combinations can be
depicted either as a mask or as stencils.

The mask documents the coefficients by which a given old
vertex influences the neighbouring new ones. It can be de-
picted in the form of a diagram where coefficients by which
a given old vertex influences the surrounding new ones are
laid out in the same pattern as the new vertices. Each scheme
has exactly one mask for each valency. Stencils are often
described using a set of diagrams where the coefficients by
which nearby old vertices influence a given new one are laid
out in the same pattern as those old vertices.

The purpose of tuning the coefficients of a subdivision
scheme is to make the limit surface behave as well as possi-
ble around extraordinary points, in particular with respect to
continuity and curvature behaviour. It is possible to choose
different levels of tuning depending on how many coeffi-
cients are taken to be variable.

The simplest level of tuning, used by Loop [Loo87], Velho
and Zorin [VZ01], Catmull and Clark [CC78] and Peters and
Shiue [PS03], is to tune only the influence of an extraordi-
nary vertex on its image in the next refinement.

More freedom can be gained by tuning some or all of the
coefficients in the mask of an extraordinary point. This re-
quires that the stencils used for points covered by that mask
should be renormalised, but the ratios between parent ver-
tices other than the extraordinary one remain unchanged.

Even more freedom can be obtained by tuning inde-
pendently some or all of the coefficients in any stencil in
which the extraordinary vertex makes a contribution. This
is implied in recent work by Barthe and Kobbelt [BK04],
where they describe the process of tuning two triangular grid
schemes. They optimise a linear combination of a number of
quality measures by selecting the coefficients in the stencils
around an extraordinary point.

One can go even further, by allowing the extraordinary
vertex to extend the reach of nearby ordinary ones. This was
used by Zorin, Schröder and Sweldens [ZSS96] in their tun-
ing of the Butterfly schemes. An extreme version was used
by Zulti et al. [ZLLT06] in a C2 scheme where all new ver-
tices on rays propagating from an extraordinary point have
non-standard stencils.

We choose to limit ourselves to the second level of tun-
ing and ascertain what quality of tuning can be achieved at
this level. We choose the second level because it is clear that
the first level of tuning does not usually give enough free-
doms to achieve bounded non-zero curvature. Having more
freedoms to optimise can be expected to give better results.
However, tuning stencils requires detailed work to cover the
cases where a stencil has more than one extraordinary ver-
tex in its footprint. Even though such cases only occur in the
very first steps of subdivision, they still demand considerable
implementation work and must be handled well because arti-
facts are known to be introduced at the first subdivision step.

2. Outline
In our tuning approach, rather than optimising within the
coefficient space, which involves imposing non-linear con-
straints, we use the subdominant eigenvalue, λ, as a freedom
and impose the condition that the subsubdominant eigen-
values, µ, are its square. We thus ensure that the condition
λ2 = µ, necessary for bounded curvature around extraordi-
nary vertices [DS78], is always satisfied. This also reduces
the number of freedoms to two fewer than the number of
coefficients in the mask and thus simplifies the optimisation.

By setting λ2 = µ for all µ, the curvatures around the EV
neither grow nor shrink. However, even with these eigen-
value relations, variation in the curvature of the subdivision
surface around the EV is still observed as shown in recent
work by Peters and Reif [PR04] subsequently illustrated by
Karčiauskas et al. [KPR04]. Figure 4 shows two examples
of the Gaussian curvature around the EV. The initial config-
uration was the same, but the coefficients used for the subdi-
vision process around the EV are different. Our method aims
to minimise the variation in curvature around the EV.

The optimisation process presented here involves looping
through a wide range of subdominant eigenvalues, λ. For
each λ we derive the corresponding optimal mask coeffi-
cients. The coefficients in the mask are optimised by sam-
pling a representative set of input meshes and calculating
variation in curvature. The optimal coefficients are those for
which variation in curvature is a minimum.

2.1. The Derivation of the Mask Coefficients
We determine the mask coefficients, which determine the in-
fluence of the EV on new vertices next to it, by requiring
that λ2 = µ, and solving the determinant equations for the
first and second Fourier component (see Sabin [Sab02] for
details of Fourier analysis of subdivision):

det(Ŝ1 −λI) = 0 (1)
det(Ŝ2 −µ2I) = det(Ŝ2 −λ2I) = 0 (2)

For all schemes listed here the condition that both these
determinant equations be fulfilled is sufficient to solve for
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the mask coefficients of the points closest to the EV, β and
γ (see Figures 3,11, and 16 for the labelling of mask coeffi-
cients). Because solving both determinant equations simul-
taneously results in a quadratic equation for the β and γ pair
we get two solutions for β and γ. It depends on the scheme
which solution to choose to get a sensible and, with respect
to λ, continuous answer.

A real solution for β and γ cannot be achieved for all pos-
sible values of λ. While for the Velho

√
2 scheme larger λ re-

sult in an imaginary solution for β and γ, it is smaller λ which
give rise to imaginary solutions for the binary Catmull-Clark
and 4-3 scheme. We consider these solutions not feasible and
exclude these eigenvalues from the space in which we seek
our optimum.

Once β and γ are chosen, coefficient α can be derived from
the determinant equation corresponding to the Ŝ0 Fourier
subdivision matrix. In the case of Velho’s 4-8 subdivision
scheme, this approach reduces an optimisation problem in
three dimensions to one dimension, because all three mask
coefficients are fixed by the input λ. For schemes with larger
masks, like the Catmull-Clark and 4-3 scheme, coefficients
which determine the influence of the EV on new vertices
further away from the EV are retained as freedoms in the
optimisation. We use an optimising algorithm based on the
simplex search method. It is a direct search method that does
not use numerical or analytic gradients. We start the search
from an initial estimate, which we take to be the standard
coefficients.

2.2. The Quality Measure
Because it is impossible to achieve C2 around an EV [Rei96]
we aim to improve the quality of the surface around an EV
by minimising its variation in curvature. This will minimise
undesirable rippling around EVs, which is unacceptable in
CAD/CAM applications.

Subdivision algorithms do not generate additional extraor-
dinary vertices, so that the number of EVs stays constant for
the sequence of polyhedral meshes generated. After a few
subdivision steps each EV is separated from all other EVs
by growing regular regions. In the vicinity of an EV the sub-
division surface generated can be regarded as the union of
the EV and a sequence of spline rings. To analyse the shape
at an EV where the limit surface is not necessarily C2, Peters
and Reif [PR04] analyse the spline ring of the characteristic
map around an EV. They refer to the spline ring for a char-
acteristic map as the central surface. The central surfaces at
different subdivision levels coincide. The size of the spline
ring is different for each scheme. The spline rings for the
three schemes discussed here are shown in Figure 1.

2.2.1. The Gaussian Curvature
Peters and Reif [PR04] showed that the Gaussian curvature
within a spline ring around the extraordinary vertex can be

Figure 1: The mesh is drawn as a 90 degree sector for ease
of drawing, but is symbolic of any valency. The EV, high-
lighted in grey, is in the lower left hand corner. The new
vertices after one subdivision step are shown as dots. From
left to right: The red dots show the vertices within the spline
rings of the 4-8, Catmull-Clark and 4-3 scheme, which are
used for curvature analysis.

used to detect early when a mesh will lead to undesirable
curvature behaviour. We use this measure of surface quality
in our work.

Because we are examining the limit case, relevant to
CAD/CAM, we determine the Gaussian curvature, K, using
the expression

K =
∂2z
∂x2

∂2z
∂y2 −

(

∂2z
∂x∂y

)2

(3)

where x, y, and z are rectangular coordinates aligned with the
tangent plane at the EV.

To determine the first and second derivative at vertices
within the spline ring we can apply derivative stencils. These
stencils are derived from the regular case row eigenvectors
corresponding to the eigenvalues λ and µ. The derivatives
determined in this way are derivatives with respect to local
coordinates u and v. Since we are interested in the curvature
of many points in the spline ring around the EV, we need to
relate all points to a common x, y, z coordinate system to be
able to use Equation 3 and we use the Jacobian matrix of the
characteristic to do this.

Because we determine the Gaussian curvature at each of
a dense grid of vertices in the spline ring, Equation 3 is a
discrete curvature estimator only. Although it would be more
accurate to have some measure which applied to the whole
spline ring rather than just to sample points, it is reasonable
to expect the curvature to vary smoothly over the spline ring,
because these schemes are known to be C2 in the regular
region. The spline ring is sampled densely enough to capture
the variation in curvature. We also analysed denser spline
rings around the EV, i.e. the black region in Figure 4 and the
green or blue region in Figure 12, but found that, while the
computation time increases, the overall result did not change
significantly. We therefore restrict the analysis here to the red
spline ring shown in Figures 4 and 12.

Peters and Reif [PR04] stress the fact that hybrid curva-
ture behaviour in the EV neighbourhood should be avoided,
and initially we aimed at minimising the set of hybrid cases.
As a result of this work, however, we came to believe that it
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is more important to minimise the variation in Gaussian cur-
vature, regardless of its sign. We therefore aim to determine
coefficients such that curvature variation around an EV is
kept to a minimum for as many initial configurations as pos-
sible. Indeed, our method subsumes and improves on Peters
and Reif’s because it reduces the number of configurations
for which hybrid Gaussian curvature can be observed, i.e.
where the minimum and maximum of the Gaussian curva-
ture have different signs.

2.2.2. The Characteristic Mesh

In order to achieve minimised curvature variation over as
many initial configurations as possible, we need to sample
the range of input meshes. Any input mesh configuration has
a local curvature behaviour around the EV which is some
linear combination of the three second order characteristic
maps in z, taken over the x, y configuration from the natural
configuration.

To set up the natural configuration [BS88], we use eigen-
vectors calculated from the subdivision matrix correspond-
ing to the sub- and subsubdominant eigenvalues. Once all
the coefficients are known, the eigenvectors corresponding
to the λ and µ eigenvalues respectively are determined from
the ω = 0,±1,±2 Fourier subdivision matrices [Sab02].

The column eigenvector corresponding to the subdomi-
nant eigenvalue λ, obtained from the ω = ±1 Fourier sub-
division matrix, gives the natural configuration, the way in
which the neighbourhood of the extraordinary vertex is laid
out within the tangent plane [BS88].

The column eigenvectors from the ω = 0 and ω = ±2
Fourier subdivision matrices corresponding to the subsub-
dominant eigenvector, µ, give the so-called cup and saddle
components perpendicular to the tangent plane [Sab02].

This gives a relatively coarse local polyhedron for the cup-
shape, mc, the saddle shape, ms1, with its axes aligned with
the axes of the coordinate system, and the other saddle shape,
ms2, the axes of which are rotated by 45◦. Each of these de-
fines a second order characteristic map, which we refer to
as the characteristic mesh. By combining the three charac-
teristic meshes, mc, ms1 and ms2, we can derive any central
surface.

2.2.3. The Representative Set of Shapes

We built up a representative set of central surfaces by lin-
early combining the three characteristic meshes according
to

mi = (1− r)mc + r cos(φ)ms1 + r sin(φ)ms2 (4)

where the radius, r, ranges from [0,1], using a stepsize of
0.005 and the angle φ ranges from [0,2π], with a stepsize
of π/48. We have thus a representative set of 19201 input
meshes, mi. The various configurations which are made up

mi ms2

mc
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Figure 2: Information about a representative set of
quadratic shapes, built up according to Equation 4 can be
mapped into a disk. The shape on the top left is a combina-
tion, mi, of the three characteristic meshes, mc, ms1 and ms2,
which are also shown. To obtain it, the shapes have been
combined using Equation 4 with r = 0.6 and φ = 0.78.

of certain proportion of cup and saddle shapes of differ-
ent orientations can therefore all map into a disk param-
eterised on r and φ. This representative set was sampled
densely enough to see that characteristics of the meshes vary
smoothly over the disk representation. Because the central
surfaces coincide at different subdivision levels, it is suffi-
cient to determine the Gaussian curvature of only one spline
ring around the EV.

Figure 2 shows how quadratic shapes are located in the
disk. To accomplish a symmetric plot from which the shapes
can be read off intuitively, we display the shapes at angles
Φ = φ/2 and mirror the information on the bottom half of
the disk. The pure cup is at its centre, and the pure saddles
are points around the circumference, as shown in Figure 2.
Configurations which are some mix of cup and saddle are
placed in the disk on a ray whose direction depends on the
orientation of the saddle and at a radius from the centre de-
pending on the proportions of saddle.

2.2.4. The Shape-In-The-Limit Chart
We are now able to plot a quality measure against positions
on the disk, a convention introduced by Karčiauskas et al.
[KPR04]. This is referred to as the shape-in-the-limit chart.

Peters and Reif [PR04] define different notions of shape
in the vicinity of an extraordinary vertex where the surface is
not necessarily C2. The one we use measures the Gaussian
curvature, Kc, of the subdivision surface in the central sur-
face around the extraordinary point. If Kc > 0 or Kc < 0 for
each point in the spline ring around the extraordinary ver-
tex the limit surface is elliptic or hyperbolic respectively. If
Kc changes sign within the spline ring, it is referred to as
hybrid. If the sign of Kc is the only information we want
to convey, we can use colour to represent the curvature be-
haviour within the spline ring for each mesh in our represen-
tative set: white for elliptic, grey for hyperbolic and black to
denote hybrid behaviour of the Gaussian curvature.

The disk representation of the shape-in-the-limit chart is
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Figure 3: Unnormalised mask coefficients around regular
(left) and extraordinary (right) vertices for the 4-8 subdivi-
sion scheme.

our variant of the basic idea introduced by Karčiauskas et
al. [KPR04], who treat the components more abstractly as
barycentric coordinates, which maps one sector of our disk
into a triangle without loss of information.

We extend this idea by plotting the variation in Gaussian
curvature in the spline ring for each shape as a z-dimension.
For better visualisation we use colour to indicate the size
of variation in Gaussian curvature and highlight, in black,
shapes for which a change in Gaussian curvature direction
occurs.

2.2.5. Scheme Quality
Our metric for a ‘good’ scheme is that for each valency it
minimises the mean, over the shape in the limit chart, of the
variation of Gaussian curvature over the spline ring.

3. 4-8 scheme
This approximating scheme, which generalises the four-
directional box spline, was first introduced by Velho [Vel01]
in 2001. It is C4 continuous everywhere except at extraordi-
nary vertices, where it is C1.

3.1. Mask coefficients
The scheme makes it possible to achieve high smoothness
while using small stencils, which is equivalent to having a
small mask. The mask of this scheme has three coefficients,
and is shown in Figure 3 for the regular and the extraordinary
case.

The three coefficients in the mask can be determined using
the subdominant eigenvalue, λ, as an input which fixes α, β
and γ by solving the determinant equations for the first and
second Fourier component as described in Section 2.1.

We implement the subdivision by means of standard sten-
cils everywhere except for vertices around the EV, which re-
quire non-standard stencils, using values α, β and γ to weight
the EV. The stencils are then renormalised so that the coeffi-
cients sum to 1.

The initial control mesh needs to be subdivided until the
mesh is dense enough to apply the derivative stencil and
calculate the Gaussian curvature for each vertex within the
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Figure 4: The Gaussian curvature around an EV with va-
lency n = 5 for the characteristic mesh mc (ω = 0 eigen-
vector) of the 4-8 scheme. The spline ring, which is used
for analysis, is highlighted in red. Left: The variation of
the characteristic mesh for λ = 0.72 has a curvature vari-
ation from 0.15 to 0.25, Right: The characteristic mesh for
λ = 0.7751 has a curvature variation from 0.12 to 0.14. The
latter value for λ yields the optimum coefficients with respect
to curvature variation.
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Figure 5: The 2D and 3D shape-in-the-limit charts for an
extraordinary vertex with valency n = 5 are shown together
with the natural configuration for three different subdomi-
nant eigenvalues λ for the 4-8 scheme. For both charts black
is used to highlight undesirable hybrid cases. The subdom-
inant eigenvalue λ has been increased from top to bottom
λ = 0.75, 0.7751 and 0.79.

spline ring around the EV. Figure 4 shows the Gaussian cur-
vature within the spline ring for the cup-shaped characteris-
tic mesh, mc, around the EV corresponding to two different
subdominant eigenvalues. The red parts of the data show the
spline ring which is used for analysis in the optimisation pro-
cess.

Three examples of shape-in-the-limit charts are shown in
Figure 5 for n = 5. The subdominant eigenvalue λ, is in-
creased from the top down. The charts are shown together
with the natural configuration corresponding to each λ. The
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Kc, as a function of radius for all shapes along φ = 0 in the
chart for two different subdominant eigenvalues for the 4-8
scheme. Left: λ = 0.75 and right: λ = 0.7751.
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Figure 7: The mean curvature variation in a chart corre-
sponding to λ is shown for valencies n = 5 to 8 for the 4-8
scheme. The optimum λ is the one which results in a con-
figuration which yields the minimum variation for a given
sample set of central surfaces.

λ which yields a natural configuration for which the mean
variation of Gaussian curvature is smallest is λ = 0.7751.

In Figure 6 we plot the minimum and maximum Gaussian
curvature observed within the spline ring for all configura-
tions along the φ = 0 line of the chart as a function of radius.
We conjecture from these graphs that minimising the vari-
ation in curvature around the EV has the added benefit of
bringing us close to the minimum of the number of configu-
ration for which the Gaussian curvature is hybrid.

3.2. Results
In Figure 7 we plot the variation in curvature as a function of
input λ. The optimum coefficients are derived using the sub-
dominant eigenvalue for which the variation is a minimum.

n 5 6 7 8
λ 0.7751 0.8281 0.8663 0.8939
α 11.479 20.848 33.552 50.274
β 1.5217 1.1492 0.8733 0.6838
γ 0.7146 0.4581 0.3175 0.2236

Table 1: The optimised subdominant eigenvalue and coef-
ficients for the 4-8 Velho subdivision scheme, for which the
mean variation in Gaussian curvature is a minimum.
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Figure 8: The generic mesh where the x and y values are
the standard Catmull-Clark eigenvectors corresponding to
the subdominant eigenvector and z = 1− x2 − 2y2, as used
by Karčiauskas et al. [KPR04] to illustrate their results. It
serves as a good example of a convex mesh, which is not
a perfect cup. We use valency eight for ease of comparison
with Karčiauskas et al. [KPR04].
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Figure 9: The figures show the limit surface of the subdi-
vided generic mesh with a valency of eight. Top: The mesh
has been subdivided six times. Bottom: The mesh has been
subdivided thirteen times. Two different sets of coefficients
have been used. Left: coefficients optimised using the new
method with respect to curvature variation. Right: the coef-
ficients suggested by Velho and Zorin [VZ01].

The optimum coefficients derived in this way are listed in
Table 1.

We illustrate the results by subdividing the convex generic
mesh, shown in Figure 8. This mesh is designed to highlight
difficulties in the immediate neighbourhood of an EV which
may not be easily visible in a real-world graphics example.
We use this mesh to compare the optimised coefficients with
those suggested by Velho and Zorin [VZ01].

Around EVs Velho and Zorin [VZ01] propose the modifi-
cation of the coefficient in the stencil which determines the
new position of the EV. While the weight of the old EV is
unaltered, the surrounding vertices get coefficients depend-
ing on the valency of the EV around which they are located,
βs = 1/(2n).

We subdivide a number of times before determining the
limit shape using the standard limit stencil around the EV
and the limit stencil derived from the row-eigenvector cor-
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Figure 10: The Gaussian curvature within the spline ring
after six and thirteen subdivision steps. The Gaussian cur-
vature of the spline ring corresponding to the Velho-Zorin
subdivided mesh (blue) is compared to the Gaussian curva-
ture achieved with the optimised coefficients (red).

responding to the λ = 1 eigenvalue of the tuned subdivi-
sion matrix. Figure 9 shows how the surface develops around
an EV after six and thirteen subdivision steps. Their corre-
sponding Gaussian curvature within the spline ring around
the EV are shown in Figure 10. While for the standard 4-8
scheme the curvature diverges and even becomes negative
after a number of subdivision steps, our method has a small
variation in curvature and does not change sign.

4. Catmull-Clark
Catmull-Clark subdivision [CC78], a binary scheme, is the
most widely used subdivision scheme working on a quadri-
lateral mesh. Because Catmull-Clark subdivision is a gen-
eralisation of a bi-cubic B-spline it generates surfaces that
reduce to a standard B-spline surface except at extraordinary
points. Therefore, everywhere except at extraordinary ver-
tices, the surface is continuous in tangent and curvature (C2).
At extraordinary points the surface is at least continuous in
tangent.

4.1. Mask Coefficients
The mask of this scheme has six coefficients and is shown in
Figure 11 for the regular and irregular case.

The mask coefficients α, β and γ can be solved for by
using the condition µ = λ2, since the block structure of the
Fourier matrix allows us to determine these coefficients from
the first block only.
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Figure 11: The unnormalised mask of the Catmull-Clark
scheme for the regular and extraordinary case.
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Figure 12: The Gaussian curvature for the first three spline
rings, shown in three different colours, for the characteristic
mesh ms2, the eigenvector corresponding to the µ2 eigen-
value of the Catmull-Clark scheme. Left: λ = 0.6105. Right:
λ = 0.6155.

While the coefficients α, β, γ, are fixed for a given input
λ, the coefficients, δ, ε and φ, cannot be determined using
the subdivision matrix. For each input λ we optimise these
coefficients with respect to the mean variation in Gaussian
curvature within the first spline ring.

Two examples of Gaussian curvature around a EV are
shown in Figure 12 for a choice of sub-optimal and optimal
coefficients.
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Figure 13: The 3D shape-in-the-limit chart for a mesh with
an extraordinary vertex of valency n = 5 are shown together
with the natural configuration for three different values of
λ for the Catmull-Clark scheme. Black is used to highlight
hybrid cases. The right hand side shows the minimum and
maximum Gaussian curvature, Kc, for all shapes in the chart
at φ = 0 as a function of chart radius.
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Figure 15: The figures show the limit surface of the subdivided generic mesh with a valency of eight. The mesh has been
subdivided using four different variations of the Catmull-Clark algorithm. Top: The mesh has been subdivided three times.
Bottom: The mesh has been subdivided 16 times. Four different sets of coefficients have been applied. a) coefficients optimised
with respect to curvature variation. b) the coefficients suggested by Catmull and Clark, p. 184 of [CC78]. c) the coefficients first
applied by Catmull and Clark, p. 186 of [CC78]. d) the coefficients suggested by Karčiauskas et al., p.11 of [KPR04].
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Figure 14: The mean curvature variation in a chart cor-
responding to λ is shown for valencies n = 5 to 8 for the
Catmull-Clark scheme. The opimum λ is the one which re-
sults in a configuration which yields the minimum variation
for a given sample set of central surfaces.

Examples for the 3D shape-in-the-limit chart are shown in
Figure 13. While the centre example shows the result of an
optimal solution for the mask coefficients around an EV with
valency n = 5, the two others are examples of sub-optimal
choices with respect to curvature variation.

4.2. Results
The mean curvature variation for a chart is shown as a func-
tion of λ in Figure 14. The subdominant eigenvalue, λ, which
yields the minimum mean variation within a chart can be
read off as the optimum choice for the mask of an EV with
the given valency. The mask coefficients optimised with re-
spect to curvature variation are shown in Table 2.

Other researchers have attempted to improve the be-
haviour of Catmull-Clark subdivision surfaces around EVs
[CC78, KPR04]. To compare our results to previous work

n 5 6 7 8
λ 0.615 0.703 0.768 0.815
α 60.242 95.021 143.090 207.678
β 16.375 11.386 8.577 6.688
γ 11.085 8.378 5.359 3.573
δ 3.610 2.510 1.731 1.382
ε 3.186 2.376 1.744 1.199
φ 0.786 0.816 0.773 0.663

Table 2: The optimum coefficients found for the Catmull-
Clark scheme.

we use the same generic mesh, shown in Figure 8, as Karči-
auskas et al. [KPR04] to illustrate our results. Results are
shown in Figure 15. Although the same mesh has been sub-
divided in all figures, it is obvious that all but our coefficients
cause the subdivided mesh to change shape. While b) to c)
become less cup shaped and develop to a saddle shape, for
Figure d) it is the cup shape which dominates.

5. The 4-3 scheme
4-3 subdivision is an alternative to Catmull-Clark subdivi-
sion on quadrilateral meshes. In regular mesh regions, 4-3
surfaces are C2, otherwise C1. 4-3 has a smaller mask than
Catmull-Clark. The mask for this scheme has five coeffi-
cients. It is shown for the regular case in Figure 16 together
with the extraordinary mask.

5.1. Results
The results for the optimised 4-3 scheme are obtained very
similarly to those of the Catmull-Clark and are simply read
off Figure 17, which shows how the mean variation in cur-
vature for a shape-in-the-limit chart varies with λ. The λ for
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Figure 16: The unnormalised mask of the 4-3 scheme for the
regular and extraordinary case.
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Figure 17: The mean curvature variation for a shape-in-the-
limit chart of the 4-3 scheme for every λ is plotted as a func-
tion of λ. The curve is smooth with one clear minimum.

which the variation is a minimum yields the optimised co-
efficients for the extraordinary mask. The optimised coeffi-
cients are listed in Table 3.

In Figure 18 we compare the subdivided generic mesh us-
ing the coefficients optimised with respect to curvature vari-
ations in the spline ring to those suggested by Peters and
Shiue [PS03]. Peters and Shiue suggested a non-standard
stencil to be used to determine the new EV. Again, after
a few subdivision steps the initial convex mesh develops a
saddle-like configuration around the EV. The coefficients de-
termined with the method presented here prevent such a de-
velopment. The curvature stays positive throughout the sub-
division process.

6. Discussion
We limit our degrees of freedom for optimisation by tun-
ing the mask coefficients of the scheme. Tuning with re-
spect to more degrees of freedoms, as has been explored
in [Loo02, BK04, ZSS96, ZLLT06], can be expected to im-
prove the achievable results. However, choosing more de-
grees of freedom is associated with an increase in imple-
mentation difficulties, especially as it must handle all cases
where two EVs fall close together.

By treating the subdominant eigenvalue, λ, as a freedom
we are able always to guarantee that the subsubdominant
eigenvalue be the square of the subdominant eigenvalue,
µ = λ2, a condition necessary for bounded curvature.

We also guarantee that no shape of the central surface pre-

n 5 6 7 8
λ 0.6185 0.705 0.769 0.816
α 14.8475 25.297 39.088 57.139
β 4.2348 2.972 2.22 1.7628
γ 2.2121 1.608 1.0576 0.5643
δ 1.0326 0.585 0.3973 0.3053
ε 0.6965 0.528 0.3656 0.2059

Table 3: The optimum coefficients found for the 4-3 scheme.
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Figure 18: The figures show the limit surface of the sub-
divided generic mesh with a valency of eight using differ-
ent variations of the 4-3 subdivision scheme. Top: The mesh
has been subdivided three times. Bottom: The mesh has been
subdivided 8 times. Two different sets of coefficients have
been applied. Left: Our optimised coefficients. Right: the co-
efficients suggested by Peters and Shiue [PS03].

vails over the other, by ensuring the subsubdominant eigen-
values are all equal. It has been shown that the subdivision
surface of the classical algorithms, such as Catmull-Clark,
cannot model certain basic shapes [KPR04], because of one
central surface prevailing over another due to subsubdomi-
nant eigenvalues not being equal.

By introducing a 3D shape-in-the-limit chart as a measure
of goodness of a scheme, we are able to choose mask coef-
ficients and subdominant eigenvalue around an EV such that
the variation in Gaussian curvature around an EV is a min-
imum for all possible configurations around an EV. Other
measures of goodness could be considered in the optimisa-
tion process and it would be useful to explore these. How-
ever, we believe that minimal variation in curvature is a key
requirement to ensure good behaviour around an EV.

Although we do not restrict our search to positive values,
our optimisation algorithm finds only positive coefficients
and thus ensures that the limit surface lies in the convex hull
of the control mesh.

For large valencies this method may lead to large subdom-
inant eigenvalues, a situation associated with the polar arti-
fact [SB03]. Thus, if the application only wishes to subdi-
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vide a small number of times (say 4 or 5), our results pre-
sented here may not be ’optimal’. The polar artifact is most
visible when the rendering is done by merely drawing the
polyhedron instead of a faceting of the limit surface itself.
The polar artifact problem is in fact not a surface problem:
it is a rendering problem, which is solved by simply refining
further around an EV. The 4-8 scheme in particular supports
this very well. Also, vertices of very high valencies are not
required in order to achieve the modelling of surfaces of ar-
bitrary genus, nor to follow the principle that edges in the
mesh should run along features. Large values of λ are there-
fore not a practical problem.

It is clear from Figures 7, 14, and 17 that any coefficients
giving significantly different λ values will give larger cur-
vature variation. Also, the natural configuration will differ
from the nice layout observed for optimised coefficients (see
Figures 5 and 13).

We demonstrate our algorithm on subdivision schemes
working on a quadrilateral mesh, because these are mainly
used in CAD/CAM applications. Our method can clearly
be applied to any primal quadrilateral subdivision scheme.
However, it would be straightforward to modify it to work
on primal triangular schemes.

7. Summary and Conclusion

We have presented a new method for tuning a variety of sub-
division schemes around EVs. The method ensures bounded
curvature and aims at minimising the curvature variation ob-
served at and around EVs.

Our intent was to get the best possible limit surface by tun-
ing the masks of extraordinary vertices. Applications which
require only a small number of steps, rather than going to
the limit surface, may be better tuned by other criteria. Tun-
ing stencils, while more difficult, may produce even better
results.

The method was demonstrated for three primal quadrilat-
eral subdivision schemes: 4-8, Catmull-Clark, and the 4-3
scheme. For these three schemes the mask coefficients opti-
mised with respect to curvature variations are listed in tables
for EVs with a valency 5 ≤ n ≤ 8. We compared our results
against earlier suggestions to improve the behaviour around
EVs for these schemes by subdividing a convex surface with
high valency (n = 8). We illustrated that the limit surface is
visibly better when using coefficients determined with the
method presented here.

We show that subdivision schemes may not only be tuned
to obtain bounded curvature, but that they can also be tuned
to achieve smallest possible curvature variation around ex-
traordinary points. This is so important for producing good
limit surfaces that we believe such tuning should always be
done.
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